This function builds a PCA model with all the NMR spectra. Regions with zero values (excluded regions) or near-zero variance regions are automatically excluded from the analysis.
Usage
nmr_pca_build_model(
nmr_dataset,
ncomp = NULL,
center = TRUE,
scale = FALSE,
...
)
# S3 method for class 'nmr_dataset_1D'
nmr_pca_build_model(
nmr_dataset,
ncomp = NULL,
center = TRUE,
scale = FALSE,
...
)
Arguments
- nmr_dataset
a nmr_dataset_1D object
- ncomp
Integer, if data is complete
ncomp
decides the number of components and associated eigenvalues to display from thepcasvd
algorithm and if the data has missing values,ncomp
gives the number of components to keep to perform the reconstitution of the data using the NIPALS algorithm. IfNULL
, function setsncomp = min(nrow(X), ncol(X))
- center
(Default=TRUE) Logical, whether the variables should be shifted to be zero centered. Only set to FALSE if data have already been centered. Alternatively, a vector of length equal the number of columns of
X
can be supplied. The value is passed toscale
. If the data contain missing values, columns should be centered for reliable results.- scale
(Default=FALSE) Logical indicating whether the variables should be scaled to have unit variance before the analysis takes place. The default is
FALSE
for consistency withprcomp
function, but in general scaling is advisable. Alternatively, a vector of length equal the number of columns ofX
can be supplied. The value is passed toscale
.- ...
Additional arguments passed on to mixOmics::pca
Value
A PCA model as given by mixOmics::pca with two additional attributes:
nmr_data_axis
containing the full ppm axisnmr_included
with the data points included in the model These attributes are used internally by AlpsNMR to create loading plots
See also
Other PCA related functions:
nmr_pca_outliers()
,
nmr_pca_outliers_filter()
,
nmr_pca_outliers_plot()
,
nmr_pca_outliers_robust()
,
nmr_pca_plots
Examples
dir_to_demo_dataset <- system.file("dataset-demo", package = "AlpsNMR")
dataset <- nmr_read_samples_dir(dir_to_demo_dataset)
dataset_1D <- nmr_interpolate_1D(dataset, axis = c(min = -0.5, max = 10, by = 2.3E-4))
model <- nmr_pca_build_model(dataset_1D)
dir_to_demo_dataset <- system.file("dataset-demo", package = "AlpsNMR")
dataset <- nmr_read_samples_dir(dir_to_demo_dataset)
dataset_1D <- nmr_interpolate_1D(dataset, axis = c(min = -0.5, max = 10, by = 2.3E-4))
model <- nmr_pca_build_model(dataset_1D)