Plotting functions for PCA
Usage
nmr_pca_plot_variance(pca_model)
nmr_pca_scoreplot(nmr_dataset, pca_model, comp = seq_len(2), ...)
nmr_pca_loadingplot(pca_model, comp)
Arguments
- pca_model
A PCA model trained with nmr_pca_build_model
- nmr_dataset
an nmr_dataset_1D object
- comp
Components to represent
- ...
Additional aesthetics passed on to ggplot2::aes (use bare unquoted names)
See also
Other PCA related functions:
nmr_pca_build_model()
,
nmr_pca_outliers()
,
nmr_pca_outliers_filter()
,
nmr_pca_outliers_plot()
,
nmr_pca_outliers_robust()
Examples
dataset_1D <- nmr_dataset_load(system.file("extdata", "nmr_dataset.rds", package = "AlpsNMR"))
model <- nmr_pca_build_model(dataset_1D)
nmr_pca_plot_variance(model)
nmr_pca_scoreplot(dataset_1D, model)
nmr_pca_loadingplot(model, 1)